ATU Decision Support System
DSS: a computer-based information system that supports business or organizational decision-making activities.

ATU DSS: an interactive software tool that supports asset management decisions by *integrating and reasoning with* diverse information sources about different assets and their relationships.
DSS – What it is NOT!

• It is not a tool to tell expert asset managers how to do their job!

• Asset managers are experts in their fields and have a variety of existing systems to help with asset management.

• What they are not experts on is the effects of their actions on other assets, soil, roads etc.
E.g.: *Decisions on Buried Assets*

- Change operational parameters
- Add new buried assets
- Replacement
- Emergency repairs
- Abandon
- Wait and monitor
- Diagnostics (more surveys)
- Combine with other works (road, buried assets)
- ...

- An asset manager will know what they WANT TO DO in the context of their own assets
- This may not necessarily be the best course of action in terms of the global asset ecosystem
Potential Users of the DSS

However – The purpose of our RESEARCH is to demonstrate integrated management of an asset ecosystem (Road, buried assets, soil, etc.) is beneficial.
Main Components of the ATU DSS

Knowledge Base: ontology and datasets

User Interface

Deterioration Models

Cost Models
A water utility company notices a minor leak in a pipe. This is not an urgent case (not a burst) and a decision has to be taken **whether to dig a hole** to fix the pipe.

The utility company has appropriate data about the assets it deals with but does not have data about **other related assets** that may affect the condition of the water pipe or can be affected by the pipe deterioration.

The ATU DSS aims to provide asset managers with an **integrated view** of the local asset ecosystem.
Illustrative Scenario: *Leaking Water Pipe*

What knowledge and data must be in the DSS to support such a scenario?

- **Deterioration Models**
- **ATU DSS**
- **KB**
- **Cost Models**

Will roads or other assets be affected by your planned action? Examine and assess other assets nearby.

Evaluate the cost of your planned action regarding its social, environmental and economic impacts.

What knowledge and data must be in the DSS to support such a scenario?
DSS = Ontology + Data + Reasoning

An ontology defines a *common vocabulary* for people who need to share information in a domain.

It includes *machine-interpretable definitions* of important concepts in a domain and relations among them.

An ontology can be used to perform *multi-step reasoning* to evaluate outcomes of actions and suggest courses of action.

[Data] Leaky water pipe
⇒ [Causes] Soil changes
⇒ [Results in] Loss of support for road surface and nearby assets
⇒ [Results in] Reduced lifetime of road surface and nearby assets
⇒ [Can be modelled by] Method X
⇒ [Which requires] data Y and Z
The ATU DSS ontology defines the *main concepts* describing

- buried assets (e.g. pipes)
- soil
- land cover (e.g. pavement)
- the environment and human activity
- Methods for deterioration modelling, cost modelling and sensing/data acquisition.
- as well as their relationships.
Why this approach?

• Isn’t this just common sense?

• Can’t we just do this with guidelines?

• Why do we need a computer system?

A: Complexity! …
• A diagram representing (part of, simplified) relationships between soil and pipes

• This is only ONE SMALL PART of the entire knowledge base
Main Content of the Ontology

Knowledge & Knowledge Acquisition techniques

Environment

Land Cover

Soil

Buried Asset

Human Activity

Interact or influence each other directly
Ongoing Work and Future Plans

- We have started with water/soil interactions
- We will add other concepts (road, other utilities) incrementally
- Working towards: Implementation of a prototype of an ATU DSS user interface.
- Working towards: Evaluating the ontology and the prototype DSS system in the “leaky water pipe - to dig or not to dig” scenario (moving onto other scenarios).
- Involvement of end users and domain experts is crucial!

Thank you!